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1 The Spectral Radius Formula And The Gelfand Transform

1.1 Characters of Banach algebras

Last time, we used the following result to show that morphisms to C∗-algebras are con-
tractive.

Lemma 1.1 (Spectral radius formula). R(x) = limn→∞ ‖xn‖1/n.

This is really a result about commutative Banach algebras, so to prove it we will discuss
the commutative case.

Definition 1.1. Let M be a Banach algebra (with 1M ). A character on M is a nonzero
linear ϕ : M → C such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ M . We denote XM as the
space of all characters on M .

Proposition 1.1. Let M be a Banach algebra. Any ϕ ∈ XM is automatically continuous
with ‖ϕ‖ = 1.

Proof. For any x ∈M , x− ϕ(x) · 1 ∈ ker(ϕ). Write x = (x− ϕ(x) · 1) + ϕ(x) · 1. Then

‖ϕ‖ = sup
x∈(M)1

|ϕ(x)| = sup
y∈ker(ϕ)
λ 6=0

|ϕ(y + λ · 1)|
‖y + λ · 1‖

= sup
y∈ker(ϕ)
λ 6=0

1

‖(y/λ) + 1‖
.

If ‖y′ + 1‖ < 1, then y′ is invertible, which means y′ /∈ ker(ϕ). So this equals 1.

Corollary 1.1. XM ⊆ (M∗)1 is σ(M∗,M)-compact (weak* compact).

Proof. XM is closed in the weak* topology.

1



1.2 The Gelfand transform

Definition 1.2. The Gelfand transform Γ : M → C(XM ) is given by Γ(x)(ϕ) := ϕ(x).

Proposition 1.2. The Gelfand transform has the following properties:

1. Γ is an algebra morphism.

2. ‖Γ(x)‖∞ ≤ ‖x‖.

Theorem 1.1. If M is a Banach algebra such that any x 6= 0 is invertible (a division
algebra), then M = C.

Proof. If x ∈M , then SpecM (x) 6= ∅, so let λx ∈ SpecM (x). Then x−λx1 is not invertible,
so x− λx = 0. So λx1 = x.

Proposition 1.3. If M is a Banach algebra and J ⊆ M is a closed, 2-sided ideal, then
M/J has a Banach algebra structure given by ‖x+ J‖ = infy∈J ‖x+ y‖.

Proposition 1.4. If M is a commutative Banach algebra, then there is a correspondence
between XM and the space of maximal, 2-sided ideals of M given by ϕ 7→ ker(ϕ).

Proof. Let ϕ ∈ XM , and let J be an ideal such that ker(ϕ) ( J . Let x ∈ J \ ker(ϕ). Then
x = (x− ϕ(x) · 1) + ϕ(x) · 1, so 1 is in the span of x and ker(ϕ), which is contained in J .
So J is an ideal containing M and hence equals M . That is, ker(ϕ) is maximal.

If J is a maximal ideal in M , then J is an ideal (using the ‖1 − x‖ < 1 =⇒ x is
invertible lemma), so J is closed. Then let ϕJ : M →M/J be the natural projection map.
But since J is maximal, M/J is a division algebra. So M/J = C. This means J = ker(ϕJ),
where ϕJ is a character.

Proposition 1.5. If M is a commutative Banach alagebra, then XM = ∅ and x ∈ M is
invertible if and only if Γ(x) is invertible.

Proof. If x ∈M is invertible, then Γ(x−1) is the inverse of Γ(x). If x ∈M is not invertible,
then xM is a proper, 2-sided ideal in M . Let J ⊆M be a maximal 2-sided ideal containing
xM . Then ϕJ(x) = 0, so Γ(x) is not invertible.

We can summarize our results in the following theorem.

Theorem 1.2. Let X be a commutative Banach algebra.

1. XM 6= ∅.

2. Γ is an algebra homomorphism.

3. ‖Γ(x)‖∞ ≤ ‖x‖ for all x ∈M .

4. x ∈ Inv(M) ⇐⇒ Γ(x) ∈ Inv(C(XM )).
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1.3 The spectral mapping theorem and the spectral radius formula

Corollary 1.2. LetM be a commutative Banach algebra, and let x ∈M . Then SpecM (x) =
Ran(R(x))) = SpecC(XM )(Γ(x)). Thus, RM (x) = ‖Γ(x)‖∞.

Proof.

λ /∈ SpecM (x) ⇐⇒ λ− x is invertible in M

⇐⇒ λ− Γ(x) is invertible in C(XM )

⇐⇒ λ /∈ Range(Γ(x)).

Corollary 1.3 (Spectral mapping theorem). LetM be a Banach algebra, let x ∈M , and let
f : C→ C be an entire function with f(z) =

∑∞
n=0 anz

n. Then SpecM (f(x)) = f(Spec(x)).

Remark 1.1. The function f(x) makes sense, as the sum is absolutely convergent in norm.
The radius of convergence is (lim sup |an|1/n)−1 =∞).

We can now prove the spectral radius formula.

Proof. Let M0 be the Banach algebra generated by 1, x, f(x), (x− λ)−1 for all λ ∈ ρM (x),
and (f(x)−µ)−1 for all µ ∈ ρM (f(x)), where ρ denotes the resolvent. Then M0 is commu-
tative, so SpecM0

(x) = SpecM (x) and SpecM0
(f(x)) = SpecM (f(x)). So we may assume

that M is commutative.
From the corollary, we have SpecM (xn) = (SpecM (x))n (using the Gelfand transform).

So RM (x)n = RM (xn) ≤ ‖xn‖. We get that RM (x) ≤ lim infn ‖xn‖1/n. Let G(λ) =
−λ

∑∞
n=0

xn

λn . This sum converges absolutely for |λ| > ‖x‖ and converges to (x−λ)−1. But
for |λ| > RM (x) and ϕ ∈ M∗, ϕ((x − λ)−1) is analytic, and λ 7→ ϕ(G(λ)) is analytic and
agrees with ϕ((x−λ)−1) there. So we conclude that for every ϕ ∈M∗, limn→∞ ϕ(λ1−nxn) =
0 whenever |λ| > RM (x).

Apply the uniform boundedness principle to λ1−nxn ∈ M , viewed as an element of
M∗∗. So there exists K(λ) > 0 such that ‖λ1−nxn‖ ≤ K(λ) for all n. So

lim sup
n→∞

‖xn‖1/n ≤ lim sup
n→∞

K(λ)1/n|λ|(n−1)/n = |λ|

for each |λ| > RM (x).

Corollary 1.4. Let M be a commutative Banach algebra. Then the Gelfand transform
Γ : M → C(XM ) is an isometry if and only if ‖x2‖ = ‖x‖2 for all x ∈M .

Proof. Suppose Γ is an isometry. We have R(x)2 = R(Γ(x))2 = ‖Γ(x)‖2, and R(x2) =
R(Γ(x2)) = ‖Γ(x2)‖. These are equal, so ‖x‖ = ‖Γ(x)‖ =⇒ ‖x2‖ = ‖x‖2.

Conversely if ‖x2‖ = ‖x‖2, then ‖x‖ = R(x) by the spectral radius formula (we did this
argument before).
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1.4 Characterization of commutative C∗-algebras

Recall the Stone-Weierstrass theorem.

Theorem 1.3 (Stone-Weierstrass). Let X be compact, and let M ⊆ C(X) be a norm-
closed, *-closed subalgebra with 1 ∈M that separates points (i.e. for all t1 6= t2 ∈ X, there
is an f ∈M such that f(t1) 6= f(t2)). Then M = C(X).

Theorem 1.4 (Gelfand). Let M be a commutative C∗-algebra.

1. If ϕ ∈ XM , then ϕ = ϕ∗; i.e. ϕ(x∗) = ϕ(x)∗ for all x.

2. Γ : M → C(X) is a *-algebra isometric isomorphism.

Proof. If x = x∗ ∈M , then ϕ(x) ∈ SpecM (x) ⊆ R.
By the first part, Γ(M) is *-closed. By definition Γ(M) separates points: ϕ1 6= ϕ2

means that there is an x usch that ϕ1(x) 6= ϕ2(x). By the Stone-Weierstrass, Γ(M) = X.
By the C∗-algebra axiom, ‖x2‖ = ‖x‖2, so Γ is isometric.

1.5 Continuous functional calculus

Lemma 1.2. Let M be a commutative C∗-algebra. If x ∈ M and M is generated by x,
then XM ' Spec(x) via ϕ 7→ ϕ(x).

Example 1.1. Let T ∈ B(H) be normal (T ∗T = TT ∗). Then the spectrum of C∗({T})
can be identified with Spec(T ).

So if M is a C∗-algebra, x ∈ M is normal, and f ∈ C(Spec(x)), we can think of
f(x) ∈M by f(x) = Γ−1(f). This is continuous functional calculus.

4


	The Spectral Radius Formula And The Gelfand Transform
	Characters of Banach algebras
	The Gelfand transform
	The spectral mapping theorem and the spectral radius formula
	Characterization of commutative C*-algebras
	Continuous functional calculus


