Math 259A Lecture 3 Notes

Daniel Raban

October 2, 2019

1 The Spectral Radius Formula And The Gelfand Transform

1.1 Characters of Banach algebras

Last time, we used the following result to show that morphisms to C*-algebras are con-
tractive.

Lemma 1.1 (Spectral radius formula). R(z) = lim, o ||z |/™.

This is really a result about commutative Banach algebras, so to prove it we will discuss
the commutative case.

Definition 1.1. Let M be a Banach algebra (with 15;). A character on M is a nonzero
linear ¢ : M — C such that p(zy) = p(z)p(y) for all x,y € M. We denote X as the
space of all characters on M.

Proposition 1.1. Let M be a Banach algebra. Any ¢ € Xy is automatically continuous
with ||| = 1.

Proof. For any x € M, z — ¢(x) - 1 € ker(p). Write z = (z — ¢(z) - 1) + ¢(z) - 1. Then
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If ||y + 1]| < 1, then 3 is invertible, which means vy’ ¢ ker(¢). So this equals 1. O

Corollary 1.1. X, C (M*)y is o(M*, M)-compact (weak* compact).

Proof. Xy is closed in the weak™ topology. O



1.2 The Gelfand transform
Definition 1.2. The Gelfand transform I': M — C(Xyy) is given by I'(z)(p) := ¢(z).
Proposition 1.2. The Gelfand transform has the following properties:

1. T is an algebra morphism.

2. I0(@)lloo < 2.

Theorem 1.1. If M is a Banach algebra such that any x # 0 is invertible (a division
algebra), then M = C.

Proof. If x € M, then Spec,;(z) # &, so let A, € Spec,(x). Then z— ;1 is not invertible,
sox— Az =0. So A\;1 =ux. O

Proposition 1.3. If M is a Banach algebra and J C M is a closed, 2-sided ideal, then
M/J has a Banach algebra structure given by |z + J|| = infyc s ||z + y||.

Proposition 1.4. If M is a commutative Banach algebra, then there is a correspondence
between Xy and the space of mazximal, 2-sided ideals of M given by ¢ — ker(p).

Proof. Let ¢ € X)s, and let J be an ideal such that ker(¢) C J. Let x € J \ ker(¢). Then
x=(x—¢(x) 1)+ e(r)-1,so0 1is in the span of x and ker(p), which is contained in J.
So J is an ideal containing M and hence equals M. That is, ker(y) is maximal.

If J is a maximal ideal in M, then J is an ideal (using the ||[1 —z|] <1 = =z is
invertible lemma), so .J is closed. Then let ¢; : M — M/J be the natural projection map.
But since J is maximal, M/J is a division algebra. So M/J = C. This means J = ker(¢y),
where ¢ is a character. O

Proposition 1.5. If M is a commutative Banach alagebra, then Xy = @ and © € M is
invertible if and only if I'(z) is invertible.

Proof. If x € M is invertible, then I'(x~!) is the inverse of I'(x). If x € M is not invertible,
then M is a proper, 2-sided ideal in M. Let J C M be a maximal 2-sided ideal containing
xM. Then ¢ (x) =0, so I'(x) is not invertible. O

We can summarize our results in the following theorem.
Theorem 1.2. Let X be a commutative Banach algebra.

1. Xy # 9.

2. T s an algebra homomorphism.

3. ||IT(z)]|co < ||| for all x € M.

4. x €Inv(M) <= T'(z) € Inv(C(Xn)).



1.3 The spectral mapping theorem and the spectral radius formula

Corollary 1.2. Let M be a commutative Banach algebra, and let x € M. Then Specy;(x) =
Ran(R(z))) = Spece(x,,) (D). Thus, Ry (z) = [[T(2)[co-

Proof.

A ¢ Specys(x) <= X — x is invertible in M
<= A\ —I'(z) is invertible in C'(Xy)
<= X ¢ Range(I'(x)). O

Corollary 1.3 (Spectral mapping theorem). Let M be a Banach algebra, let x € M, and let
[ : C — C be an entire function with f(z) =Y 2 anz". Then Specy,(f(z)) = f(Spec(z)).

Remark 1.1. The function f(z) makes sense, as the sum is absolutely convergent in norm.
The radius of convergence is (lim sup \an\l/ "=l = 00).

We can now prove the spectral radius formula.

Proof. Let My be the Banach algebra generated by 1,x, f(z), (x — \)~! for all A € pps(2),
and (f(x) —p)~! for all u € ppr(f(x)), where p denotes the resolvent. Then My is commu-
tative, so Specy (z) = Specy,(z) and Specy (f(x)) = Specy,(f(z)). So we may assume
that M is commutative.

From the corollary, we have Spec,,(z") = (Spec,;(z))" (using the Gelfand transform).
So Ry(z)™ = Rpr(z™) < ||z"||. We get that Ry(z) < liminf, ||z"]|"/". Let G(\) =
—AY"% , %-. This sum converges absolutely for |A| > ||z|| and converges to (z —A)~!. But
for || > Rys(z) and ¢ € M*, o((z — A)~!) is analytic, and A = o(G())) is analytic and
agrees with ¢((z—\)~!) there. So we conclude that for every ¢ € M*, lim, oo @(A17"2") =
0 whenever |\| > Rys(x).

Apply the uniform boundedness principle to A'="2" € M, viewed as an element of
M**. So there exists K()\) > 0 such that |A!7"z"| < K()) for all n. So

lim sup [|™]|*/™ < limsup K (A)Y/7[\|(=1/7 = |\

for each |A| > Ry (). O

Corollary 1.4. Let M be a commutative Banach algebra. Then the Gelfand transform
[': M — C(Xy) is an isometry if and only if ||22| = ||z||* for all x € M.

Proof. Suppose T is an isometry. We have R(z)? = R(['(z))? = ||T'(2)||?, and R(z?) =

R(I(2?)) = |[T(2?)[|. These are equal, so ||z]| = |T(z)|| = [«?]| = [l].
Conversely if ||z%|| = ||z||?, then ||z| = R(z) by the spectral radius formula (we did this
argument before). ]



1.4 Characterization of commutative C"*-algebras

Recall the Stone-Weierstrass theorem.

Theorem 1.3 (Stone-Weierstrass). Let X be compact, and let M C C(X) be a norm-
closed, *-closed subalgebra with 1 € M that separates points (i.e. for all t; # ty € X, there
is an f € M such that f(t1) # f(t2)). Then M = C(X).

Theorem 1.4 (Gelfand). Let M be a commutative C*-algebra.
1. If p € Xy, then o = @*; i.e. p(x*) = p(x)* for all x.
2.T: M — C(X) is a *algebra isometric isomorphism.

Proof. If x = z* € M, then ¢(x) € Spec,,(z) C R.

By the first part, I'(M) is *-closed. By definition I'(M) separates points: ¢ # @2
means that there is an x usch that ¢;(x) # @a(z). By the Stone-Weierstrass, I'(M) = X.
By the C*-algebra axiom, ||z%|| = ||z||?, so T is isometric. O

1.5 Continuous functional calculus

Lemma 1.2. Let M be a commutative C*-algebra. If x € M and M is generated by x,
then Xy ~ Spec(x) via ¢ — p(x).

Example 1.1. Let T € B(H) be normal (T*T = TT*). Then the spectrum of C*({T'})
can be identified with Spec(T).

So if M is a C*-algebra, z € M is normal, and f € C(Spec(z)), we can think of
f(x) € M by f(x) =T~1(f). This is continuous functional calculus.
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